Rules:

1) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
2) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad \lim _{x \rightarrow a} g(x) \neq 0$
3) $\lim _{x \rightarrow a} \mathrm{c} f(\mathrm{x})=\mathrm{c} \lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})$
4) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
5) $\lim _{x \rightarrow a}[f(x) \bullet g(x)]=\lim _{x \rightarrow a} f(x) \bullet \lim _{x \rightarrow a} g(x)$
6) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} \mathrm{f}(\mathrm{x})>0$ if n is even

Types:

1) Limits of Constants: $\lim _{x \rightarrow a} 6 y+2=6 y+2$
2) Direct Substitution: $\lim _{x \rightarrow 2} \frac{x+1}{x+2}=\frac{(2)+1}{(2)+2}=\frac{3}{4}$
3) Left-Right Limits: $\quad \lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1 \quad$ A) Algebraic solution if possible takes Precedence.
B) Use knowledge of the graph(s) to work it out.
C) Use Calculator to check close values.
4) $\frac{1}{0}$ Type Limits: $\quad \lim _{x \rightarrow 2} \frac{1}{x-2} \quad \begin{array}{ll}\text { A) Use Left/Right limits to check for infinity }\end{array}$
B) Usually result in Vertical Asymptotes.
5) $\frac{0}{0}$ Type Limits:
A) Factor and Cancel

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

B) Common Denominator

$$
\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}
$$

C) Rationalize

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}
$$

6) Infinity Limits: $\quad \lim _{x \rightarrow \infty} \frac{5 x^{2}-4 x}{3 x^{2}-2}=\frac{5}{3}$
A) Divide terms by highest power of x
B) Usually results in Horizontal Asymptotes.
7) Squeeze Theorem: $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right) \quad$ Squeeze between $-x^{2}<x^{2} \sin \left(\frac{1}{x}\right)<x^{2}$
8) Delta-Epsilon: $\quad \lim _{x \rightarrow a} f(x)=\mathrm{L} \quad$ for every $\varepsilon>0$ there is a $\delta>0$ such that: If $0<|\mathrm{x}-\mathrm{a}|<\delta$ then $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$
9) L'Hospital's Rule: For $\frac{0}{0}$ or $\frac{\infty}{\infty}$ forms
