Brebeuf College

Calculus Limit - Rules

Mr. Ryan

Rules:

1)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2)
$$\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x)$$

3)
$$\lim_{x \to a} [f(x) \bullet g(x)] = \lim_{x \to a} f(x) \bullet \lim_{x \to a} g(x)$$

6)
$$\lim_{x \to a} \sqrt[n]{f(x)} = \frac{\lim_{x \to a} f(x)}{\sqrt{\lim_{x \to a} f(x)}} \lim_{x \to a} f(x) = \frac{1}{|x|} \int_{x \to a} f(x) = \frac{1}{|x|} \int_$$

Types:

- 1) Limits of Constants: $\lim_{x \to a} 6y + 2 = 6y + 2$
- 2) **Direct Substitution**: $\lim_{x \to 2} \frac{x+1}{x+2} = \frac{(2)+1}{(2)+2} = \frac{3}{4}$
- 3) Left-Right Limits: $\lim_{x\to 0^+} \frac{\sin(x)}{x} = 1$ A) Algebraic solution if possible takes Precedence. B) Use knowledge of the graph(s) to work it out. C) Use Calculator to check close values.
- 4) $\frac{1}{0}$ **Type Limits**: $\lim_{x \to 2} \frac{1}{x-2}$ A) Use Left/Right limits to check for infinity B) Usually result in Vertical Asymptotes.
- 5) $\frac{0}{0}$ Type Limits:A) Factor and Cancel $\lim_{x \to 2} \frac{x^2 4}{x 2}$ B) Common Denominator $\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$ C) Rationalize $\lim_{x \to 0} \frac{\sqrt{x^2 + 9} 3}{x^2}$
- 6) Infinity Limits: $\lim_{x \to \infty} \frac{5x^2 4x}{3x^2 2} = \frac{5}{3}$ A) Divide terms by highest power of x B) Usually results in Horizontal Asymptotes. 7) Squeeze Theorem: $\lim_{x \to 0} x^2 \sin(\frac{1}{x})$ Squeeze between $-x^2 < x^2 \sin(\frac{1}{x}) < x^2$ 8) Delta-Epsilon: $\lim_{x \to a} f(x) = L$ for every $\varepsilon > 0$ there is a $\delta > 0$ such that: If $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

9) **L'Hospital's Rule**: For $\frac{0}{0}$ or $\frac{\infty}{\infty}$ forms