To Sketch the Curve $y=f(x)$

A) Domain - Determine the set of values of x for which $f(x)$ is defined.
B) Intercepts - Find the y intercept by setting $\mathrm{x}=0$ and solving for $\mathrm{y} \quad(0, \mathrm{y})$

- Find the x intercept by setting $\mathrm{y}=0$ and solving for $\mathrm{x}(\mathrm{x}, 0) *$ Do not attempt if too difficult.
C) Symmetry - If $\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$ then $\mathrm{f}(\mathrm{x})$ is even and symmetrical about the y - axis.
- If $f(-x)=-f(x)$ then $f(x)$ is odd and symmetrical about the origin.
D) Asymptotes - Hole: If ($\mathrm{x}-\mathrm{x}_{\mathrm{h}}$) can be cancelled on the top and bottom of $\mathrm{f}(\mathrm{x})$ then ${\mathrm{x}=\mathrm{x}_{\mathrm{h}} \text { is a hole. }}_{\text {D }}$.
- Vertical: Equate the denominator of $\mathrm{f}(\mathrm{x})$ to zero after cancelling common factors to find $\mathrm{x}=\mathrm{x}_{\mathrm{v}}$. Evaluate $\lim _{x \rightarrow x_{\mathrm{v}}-} f(x)$ and $\lim _{x \rightarrow x_{\mathrm{v}}} f(x)$ to identify either $-\infty$ or ∞.
- Horizontal: If $\lim _{x \rightarrow-\infty} f(x)=\mathbb{L}$ or $\lim _{x \rightarrow \infty} f(x)=\mathbb{L}$ then $\mathrm{y}=\mathrm{L}$ is a horizontal asymptote.
- Slant: The line $y=m x+b$ is a slant asymptote when $\lim _{x \rightarrow \pm \infty}[f(x)-(m x+b)]=0$
E) Intervals - Find all Type I critical numbers x_{c} by setting $\mathrm{f}^{\prime}(\mathrm{x})=0$ and solving for x .
- Find all Type II critical numbers \mathbf{x}_{c} where $\mathrm{f}^{\prime}(\mathrm{x})$ does not exist.
- Set up a chart of intervals using these critical numbers.
- If $\mathrm{f}^{\prime}(\mathrm{x})>0$ the interval is increasing and if $\mathrm{f}^{\prime}(\mathrm{x})<0$ the interval is decreasing.
F) Max/ $\operatorname{Min} \quad$ - First Derivative Test: If $\mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)$ exists and interval changes from inc $\rightarrow \operatorname{dec} \quad\left[\mathbf{x}_{\mathbf{c}}, \mathrm{f}\left(\mathbf{x}_{\mathrm{c}}\right)\right]$ is a Local Max but if interval changes from dec \rightarrow inc then $\left[x_{c}, f\left(x_{c}\right)\right]$ is a Local Min.
- Second Derivative Test: If $f\left(\mathbf{x}_{\mathbf{c}}\right) \& \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)$ exist and $\mathrm{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)>0$ then $\left[\mathbf{x}_{\mathbf{c}}, f\left(\mathbf{x}_{\mathbf{c}}\right)\right]$ is a Local Min but if $\mathrm{f}^{\prime \prime}\left(\mathbf{x}_{\mathrm{c}}\right)<0$ then $\left[\mathbf{x}_{c}, \mathrm{f}\left(\mathbf{x}_{\mathrm{c}}\right)\right.$] is a Local Max. If $\mathrm{f} "\left(\mathbf{x}_{c}\right)=0$ or f " $\left(\mathbf{x}_{\mathrm{c}}\right)$ doesn't exist, use the First Derivative Test.
- Inflection point: Type I xc \quad no change inc \rightarrow dec or dec \rightarrow inc occurs.
- Vert Tangent: Type II Xc , f $(\mathbf{x c})=$ exists, no change inc \rightarrow dec or dec \rightarrow inc occurs.
- Cusp: \quad Type II $\mathbf{x c}, \mathrm{f}(\mathbf{x c})=$ exists , a change inc \rightarrow dec or $\operatorname{dec} \rightarrow$ inc occurs.
G) Concavity - Find all Type I inflection numbers x_{i} by setting $f "(x)=0$ and solving for x.
- Find all Type II inflection numbers x_{i} where f " (x) does not exist.
- Set up a chart of intervals using these inflection numbers.
- If $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ the interval is Concave Up and if $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ the interval is Concave Down.
H) Inflection - If $\mathbf{f}\left(\mathrm{x}_{\mathrm{i}}\right)$ exists and an interval changes concavity then $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right]$ is an inflection point.
- From the information gathered in \mathbf{A} through \mathbf{H}, sketch the curve. If unsure about a particular area try a simple substitution of an x value in $f(x)$ to obtain the y value.

