Brebeuf College

Calculus - Curve Sketching

Mr. Ryan

To Sketch the Curve y = f(x)

A) Domain	- Determine the set of values of x for which $f(x)$ is defined.
B) Intercepts	 Find the y intercept by setting x = 0 and solving for y (0, y) Find the x intercept by setting y = 0 and solving for x (x, 0) * Do not attempt if too difficult.
C) Symmetry	 If f(-x) = f(x) then f(x) is even and symmetrical about the y - axis. If f(-x) = -f(x) then f(x) is odd and symmetrical about the origin.
D) Asymptotes	- Hole: If $(x - x_h)$ can be cancelled on the top and bottom of $f(x)$ then $x = x_h$ is a hole.
	- Vertical: Equate the denominator of $f(x)$ to zero after cancelling common factors to find $x = x_v$. Evaluate $\lim_{x \to x_v^-} f(x)$ and $\lim_{x \to x_v^+} f(x)$ to identify either $-\infty$ or ∞ .
	- Horizontal: If $\lim_{x \to -\infty} f(x) = \mathbf{L}$ or $\lim_{x \to \infty} f(x) = \mathbf{L}$ then $y = \mathbf{L}$ is a horizontal asymptote.
	- Slant: The line $y = \mathbf{mx} + \mathbf{b}$ is a slant asymptote when $\lim_{x \to \pm \infty} [f(x) - (\mathbf{mx} + \mathbf{b})] = 0$
E) Intervals	 Find all Type I critical numbers x_c by setting f'(x) = 0 and solving for x. Find all Type II critical numbers x_c where f '(x) does not exist. Set up a chart of intervals using these critical numbers. If f '(x) > 0 the interval is increasing and if f '(x) < 0 the interval is decreasing.
F) Max/Min	- <i>First Derivative Test:</i> If $f(\mathbf{x}_c)$ exists and interval changes from inc \rightarrow dec $[\mathbf{x}_c, f(\mathbf{x}_c)]$ is a <u>Local Max</u> but if interval changes from dec \rightarrow inc then $[\mathbf{x}_c, f(\mathbf{x}_c)]$ is a <u>Local Min</u> .
	- Second Derivative Test: If $f(\mathbf{x}_c) \& f'(\mathbf{x}_c)$ exist and $f''(\mathbf{x}_c) > 0$ then $[\mathbf{x}_c, f(\mathbf{x}_c)]$ is a Local Min but if $f''(\mathbf{x}_c) < 0$ then $[\mathbf{x}_c, f(\mathbf{x}_c)]$ is a Local Max. If $f''(\mathbf{x}_c) = 0$ or $f''(\mathbf{x}_c)$ doesn't exist, use the First Derivative Test.
	- Inflection point:Type I \mathbf{x}_c no change inc \rightarrow dec or dec \rightarrow inc occurs Vert Tangent:Type II \mathbf{x}_c , f (\mathbf{x}_c) = exists, no change inc \rightarrow dec or dec \rightarrow inc occurs Cusp:Type II \mathbf{x}_c , f (\mathbf{x}_c) = exists, a change inc \rightarrow dec or dec \rightarrow inc occurs.
G) Concavity	 Find all Type I inflection numbers xi by setting f "(x) = 0 and solving for x. Find all Type II inflection numbers xi where f "(x) does not exist. Set up a chart of intervals using these inflection numbers. If f "(x) > 0 the interval is <u>Concave Up</u> and if f "(x) < 0 the interval is <u>Concave Down</u>.
H) Inflection	- If $f(x_i)$ exists and an interval changes concavity then $[x_i, f(x_i)]$ is an inflection point.
I) Skętch	- From the information gathered in A through H , sketch the curve. If unsure about a

particular area try a simple substitution of an x value in f(x) to obtain the y value.