| $\mathbf{A}$ | - | Total Amount of Money | $\mathbf{r}$ | - | Rate of Interest per year or Time Interval |
| :---: | :--- | :--- | :---: | :---: | :--- |
| $\mathbf{P}$ | - | Principal or Regular Payment | $\mathbf{c}_{\mathbf{y}}$ | - | \# or Compounds per year |
| $\mathbf{P V}$ | - | Present Value | $\mathbf{C}_{p}$ | - | \# or Compounds per payment |
| $\mathbf{n}$ | - | Number of payments | $\mathbf{t}$ | - | Time in years or in Time Intervals |

*Note: For all Calculations involving Compounding: $\mathbf{R}=\left(1+\frac{r}{c_{y}}\right)$

## Simple Interest

$$
\begin{array}{ll}
\text { Amount of Simple Interest: } & \mathrm{A}_{\mathrm{I}}=\mathrm{Pr} \mathrm{t} \\
\text { Principal and Simple Interest: } & \mathrm{A}=\mathrm{P}+\mathrm{Pr} \mathrm{t}
\end{array}
$$

## Compound Interest

Amount of Compound Interest: $\quad A_{I}=P\left(R^{t_{y}}-1\right)$
Principal and Compound Interest: $\quad \mathrm{A}=\mathrm{P} \quad \mathrm{R}^{\mathrm{tc}_{\mathrm{y}}}$
Present Value: $\quad P V=\frac{A}{R^{t c_{y}}}$

## Annuities

$$
\begin{array}{ll}
\text { Total Amount of an Annuity: } & \mathrm{A}=\frac{\mathrm{P}\left(\mathrm{R}^{\mathrm{n} \mathrm{c}_{\mathrm{p}}}-1\right)}{\left(\mathrm{R}^{\mathrm{c}_{\mathrm{p}}}-1\right)} \\
\text { Present Value of an Annuity: } & \mathrm{PV}=\frac{\mathrm{P}\left(1-\mathrm{R}^{-\mathrm{n} c_{p}}\right)}{\left(\mathrm{R}^{\mathrm{C}_{\mathrm{p}}}-1\right)}
\end{array}
$$

## Mortgage

> Mortgage Payment:

$$
\text { Payment }=\frac{\mathrm{A}\left(\mathrm{R}^{\mathrm{c}_{\mathrm{p}}}-1\right)}{\left(1-\mathrm{R}^{-\mathrm{nc}}\right)}
$$

